Renforcement du pont 5 à Orly suite à l'augmentation des charges des avions (Boeing 747)

Aude PETEL ADP - Pôle métier Ouvrages d'Art

Aéroports de Paris (ADP)

- Société anonyme créée en 1945
- Cotée en bourse

- Chargée d'une mission de service public : exploitation aéroportuaire
- Etat actionnaire à 52,1 %
- 7100 salariés (3000 à Orly, 3600 à CDG, 150 au Bourget, 300 au siège à Paris-Raspail)

Le pôle métier Ouvrages d'Art d'ADP

ANY HANCE?

- Equipe de 8 personnes (3 ingénieurs, 4 projeteurs)
- Etudes et suivi de travaux, dès la phase de conception (AVP, PRO, DCE, CEE)
 - Ouvrages neufs aéronautiques
 - Ouvrages neufs routiers (classiques et engins de piste)
 - **Tunnels**
 - Réparations et renforcements d'ouvrages anciens
 - Nombreux soutènements
 - Affaires diverses : massifs pour totems, parkings, ...

- Domaine d'action : Aéroports d'Orly et de CDG principalement
- Présence d'un laboratoire ADP pour inspections et suivi des ouvrages, essais sur matériaux.

Patrimoine OA d'ADP

Le patrimoine d'ouvrages d'art d'ADP

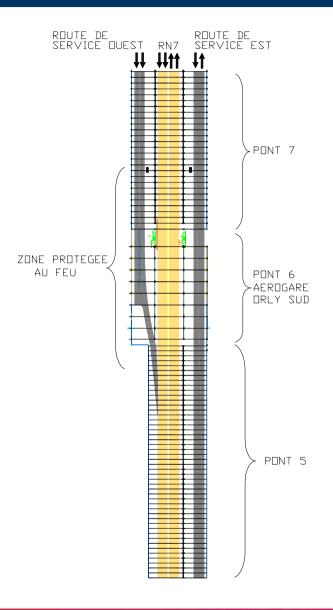
Orly

- Une vingtaine de ponts routiers
- > 7 Ponts aéronautiques
- Nombreux soutènements
- > 1 bâtiment-pont (aérogare d'Orly Sud)

Roissy CDG

- Une centaine de ponts routiers
- Une trentaine de ponts aéronautiques
- 2 tunnels
- Nombreux soutènements

Les tunnels d'Orly



- Permet à l'axe Nord-Sud que constitue la RN7 de franchir la zone de l'aéroport d'Orly Sud
- Constitués de 3 ouvrages distincts :
 - Au Nord le pont 7 : ouvrage routier supportant l'esplanade de l'aérogare
 - Au Centre le pont 6 : bâtiment-pont Aérogare Orly Sud
 - ❖ Au Sud le pont 5 : ouvrage aéronautique (aire de stationnement et de manœuvre d'avions)

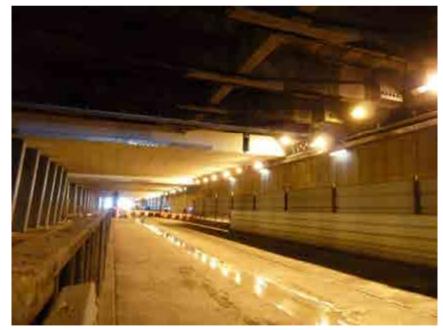
- ❖ Au Nord le pont 7 : ouvrage routier supportant l'esplanade de l'aérogare
- ❖ Au Centre le pont 6 : bâtiment-pont Aérogare Orly Sud
- ❖ Au Sud le pont 5 : ouvrage aéronautique (aire de stationnement et de manœuvre d'avions)

Les intervenants

- Maîtrise d'ouvrage, maîtrise d'ouvrage déléguée, maîtrise d'œuvre, contrôle des études d'exécution et contrôle des travaux : Aéroports de Paris
- Consultant d'ADP pour la précontrainte : M. Chabert
- Entreprise :
 - Mandataire FREYSSINET
 - Bureau d'études ECERP
 - Gammagraphie effectuée par le CETE de Lyon
- Bureau de contrôle Dekra

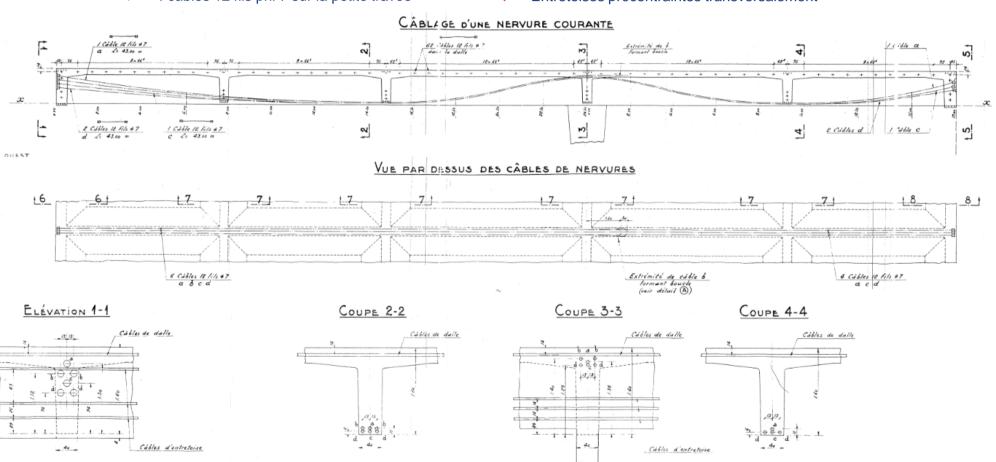
Délai global : 9 mois en 2012-2013, dont 4 mois pour préparation, études et radiographies

Chantier de nuit 22H-6H Coût : 1 million d'euros HT

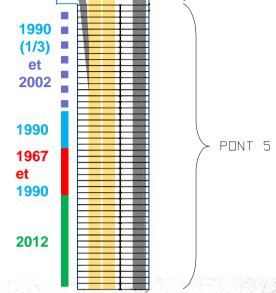


Le pont 5 à Orly

- Ouvrage aéronautique (aire de stationnement et de manœuvre d'avions)
 - Ouvrage en béton précontraint, construit en 1958.
 - 2 travées continues (environ 24.5 m 17 m), largeur 165 m environ (hors emprise paralumes – démontés récemment).
 - Structure = 48 poutres d'1.60 m de haut + hourdis de 28cm d'épaisseur. Poutres espacées de 3.50 m.
 - A été renforcé par de la précontrainte extérieure (pour moitié en 1967, 1990 et 2002, pour moitié en 2012).



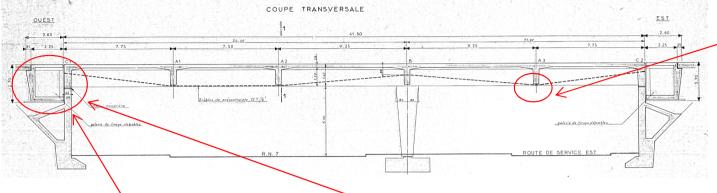
Câblage d'origine

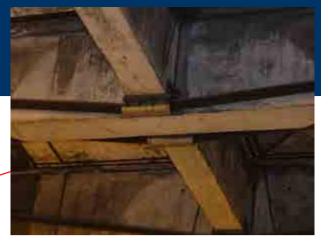

- 6 câbles 12 fils phi 7 sur la grande travée
- Hourdis précontraint transversalement


- 4 câbles 12 fils phi 7 sur la petite travée
- Entretoises précontraintes transversalement

Renforcements successifs

- 1967 : renforcement des poutres centrales, pour le passage d'avions de 300 t en zone centrale (12T13S, ancrés derrière les culées, dans la galerie technique)
- 1990 : renforcement des poutres centrales, pour le passage des B747 en zone centrale
 (4T15S, ancrés dans la galerie technique ou avec des blocs d'ancrage)
- 2002: renforcement des poutres Nord, pour le passage des B747 en zone nord (4T15S,
 9T15S ou 12T15S, ancrés avec des blocs d'ancrage)





Renforcement du pont 5 à Orly

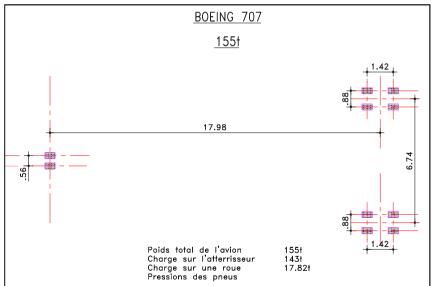
Ancrage des câbles de renfort existants

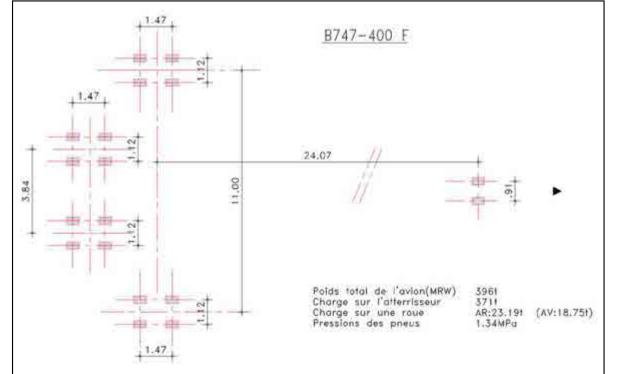
Selles de déviation sous entretoises intermédiaires

Vues de la galerie technique et des ancrages des câbles de renfort de 1967 et 1990

Pourquoi renforcer cet ouvrage?

- Ouvrage conçu dans les années 50
 - Charges d'avion de calcul de 100, 150,


200 et 220 tonnes


- Roues simples ou jumelées, de 25 à 45 tonnes

Boeing 707 de 155 tonnes

Boeing 747-400 de 400 tonnes

Matériaux

- Béton B35 théorique, après essais, on a pris en compte dans les calculs fc28= 40 MPa
- ❖ Aciers passifs fe=400 MPa
- Précontrainte :

	origine	renforts 1967	renforts 2012-2013
type de câble	12phi7	12T13	12T15S
Ар	4,62 cm ²	11,30 cm²	18 cm²
E	200 000 MPa	190 000 MPa	190 000 MPa
Fpeg	1230 MPa	1452 MPa	1640 MPa
Fprg	1373 MPa	1638 MPa	1860 MPa
Tension initiale	1180 MPa	1404 MPa	1476 MPa
Relaxation à 1000 h	5%	5%	5%
Perte en ligne phi	0,20%	0,10%	0,04%
Coefficient de frottement	0,16	0,05	0,05

Charges et combinaisons

- Charges permanentes : poids propre
- Pas de superstructures
- Charges d'exploitation : B747-400 (+coefficient dynamique 1,10) Tracma Bc
- Gradient thermique de 10° sur la hauteur totale du tablier

Combinaisons:

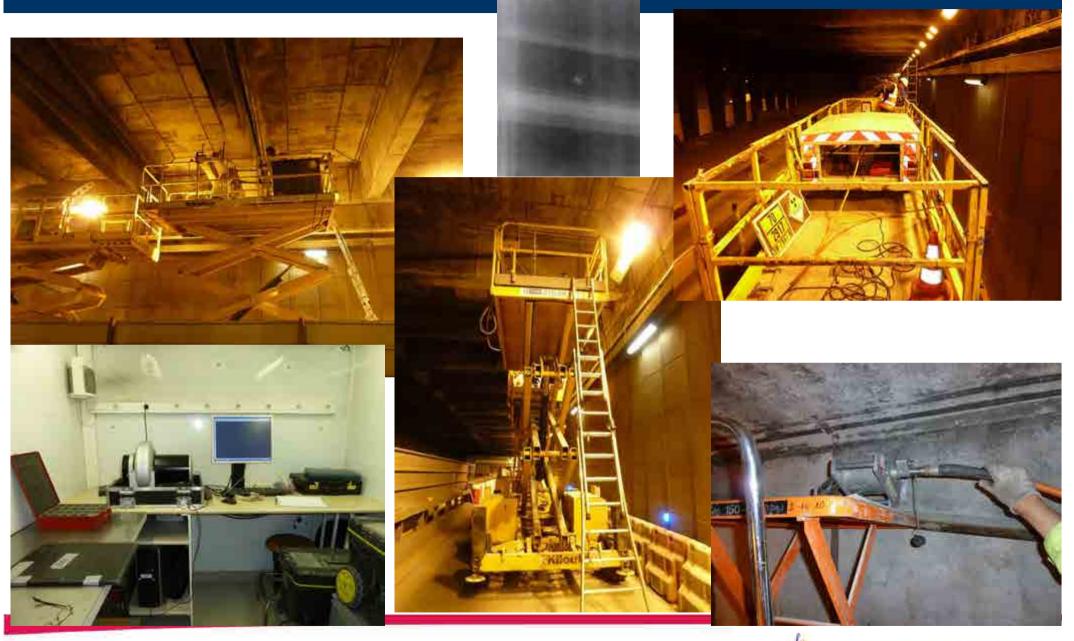
ELS rare : roues extérieures du train d'atterrissage à 7 m du bord du pont

$$G + P + T$$
 ou $G + P + Avion + 0.5T$

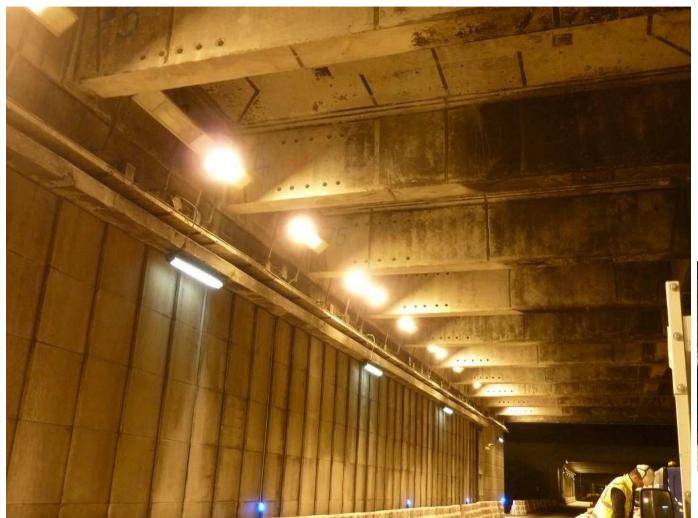
- ELU fondamental: 1,35Gmax + Gmin + P + 1,5T ou 1,35Gmax + Gmin + P + 1,5 Avion + 0,65 T
- ELU accidentel: G + P + Avion (roues extérieures du train d'atterrissage à 3,5 m du bord du pont)

9.250

Modèle de calcul


- ST1 et Robot pour la flexion longitudinale :
 - Prise en compte de l'historique des renforcements successifs avec ST1, modélisation du câblage
 - Ajustements nécessaires (appareils d'appui) car certaines sections avaient peu de marge
 - Sous Robot : éléments filaires pour les poutres, et surfaciques pour le hourdis
- Calculs manuels pour les barres de brêlage des massifs d'ancrage

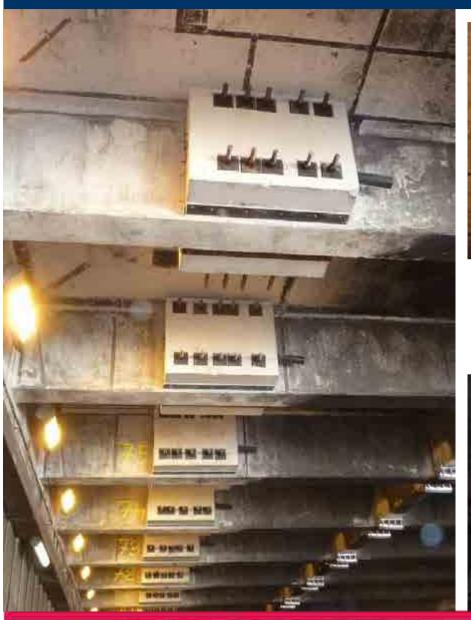
Modèle ST1 du BE : câbles d'origine et câbles de renfort 2012



Renforcement du pont 5 – Chantier : gammagraphies

Renforcement du pont 5 – Chantier : carottages

Renforcement du pont 5 – Chantier : réalisation des massifs d'ancrage



Renforcement du pont 5 – Chantier : massifs d'ancrage

Renforcement du pont 5 – Chantier : selles de déviation

Renforcement du pont 5 – Chantier : mise en tension

Renforcement du pont 5 - Chantier : bossage spécial

