

Journées techniques organisées avec l'appui du Sétra et sous l'égide de la CoTITA

durable.

des Transports

PRISE EN COMPTE DU RISQUE SISMIQUE

Mardi 27 mars 2012 Lundi 2 et mardi 3 avril 2012

CETE Méditerranée, Aix-en-Provence

Ressources, territoires, nabitats et logement Énergies et climat Développement durable And Prévention des risques Infrastructures, transports et mer in

PRISE EN COMPTE DU RISQUE SISMIQUE

Présentation du logiciel SISMUR

Christian THIBAULT (CETE Méditerranée) David CRIADO (DREAL PACA)

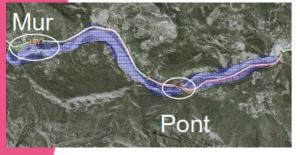
SISROUTE

Méthode simplifiée pour évaluer le risque de coupure d'un itinéraire

Concept

Approche d'évaluation préliminaire, de mise en œuvre rapide et peu coûteuse

4 étapes


Définition des aléas sismiques (SISROUTE)

Evaluation de la vulnérabilité des ponts (SISMOA)

Evaluation de la vulnérabilité des murs (SISMUR)

Détermination du risque de coupure et synthèse des

résultats sur SIG (SISROUTE)

Objectifs

⇒Classer les ouvrages à étudier et à renforcer par ordre de priorité

⇒Identifier les points faibles et prévoir les déviations potentielles

SISMUR

PROBLEMATIQUE DE L'EVALUATION DES MURS

- Peu de données observables in situ
- Ouvrages anciens: peu ou pas de données d'archives
- -Peu de dommages observés sous séismes modérés
- ⇒ Approche par indices (telle que SISMOA) inadaptée
- **⇒** Approche numérique simplifiée

LIMITES D'APPLICATION

- -Dans sa configuration actuelle, SISMUR ne traite que les <u>murs poids</u> (85% du parc français)
- -A terme, l'intégration d'autres types d'ouvrages courants (liste 1 SETRA) est envisagée.

Ministère de l'Écologie, de l'Energie, du Développement durable et de l'Aménagement du teritoire du teritoire durable, des Transports et du Logement

SISMUR - Principes méthodologiques

Méthode simplifiée pour évaluer la vulnérabilité d'un mur de soutènement

Risque de coupure de l'itinéraire au droit du mur

$$R_{max} = V_{config} max (R_{vib}; R_{env})$$

avec

- -V_{config} (évalué par SISMUR) = vulnérabilité de la chaussée portée ou soutenue
- -R_{vib} (évalué par SISMUR) = risque de dommages sur le mur sous l'effet du séisme;
- -R_{env} (évalué par SISROUTE) = risques induits sur le mur par son environnement (liquéfaction, chutes de blocs, mouvements de terrain).

Classe de risque affichée in fine sur les cartes de risques.

$0 \le R_{max} < 0.4$	⇒ Risque faible
-----------------------	-----------------

$$0.4 \le R_{\text{max}} < 0.6$$
 \Rightarrow Risque modéré

$$0.6 \le R_{\text{max}} \le 1$$
 \Rightarrow Risque élevé

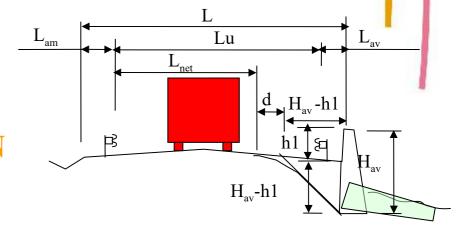
SISMUR- Principes méthodologiques

V_{config} : Incidence de la configuration de la route

V_{config} traduit la possibilité de passage d'un engin lourd de secours lorsque les éventuels murs encadrant la chaussée sont détruits.

La configuration détermine la largeur de passage L_{net}

Si
$$L_{net}/2,50 < 1$$
, alors $\Rightarrow V_{config} = 1$

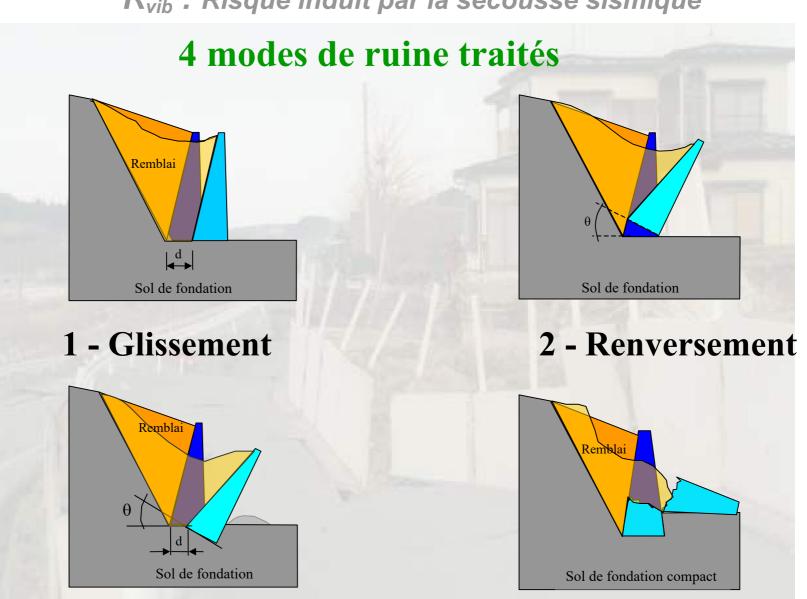

Passage d'un engin de secours IMPOSSIBLE

Si
$$2 > L_{net}/2,50 \ge 1$$
, alors $V_{config} = 0,5$

Passage d'un engin de secours INCERTAIN

Si
$$L_{net}/2,50 \ge 2$$
, alors $\Rightarrow V_{config} = 0$

Passage d'un engin de secours ASSURE



SISMUR -Principes méthodologiques

 R_{vib} : Risque induit par la secousse sismique

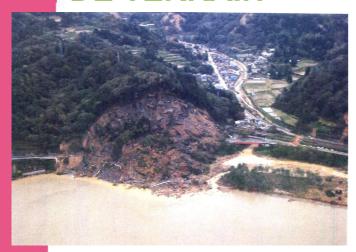
3 - Poinçonnement

4 – Rupture interne

SISMUR -Principes méthodologiques

 R_{vib} : Risque induit par la secousse sismique

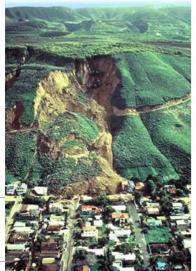
- -Pour chaque mode de ruine, on calcule l'accélération « critique » correspondant au seuil de déclenchement du dommage
- -On choisit l'accélération critique la plus pénalisante sur les 4 modes de ruine
- -La vulnérabilité du mur est déterminée sur:
 - -l'accélération critique minimale
 - -l'état du mur (cotation IQOA mur)
 - -la méthode de conception parasismique ou non
- -Le risque R_{vib}, caractéristique de la réponse du mur au séisme est déterminé par le croisement de l'aléa sismique et de la vulnérabilité calculée


_

SISROUTE – Aléas environnementaux

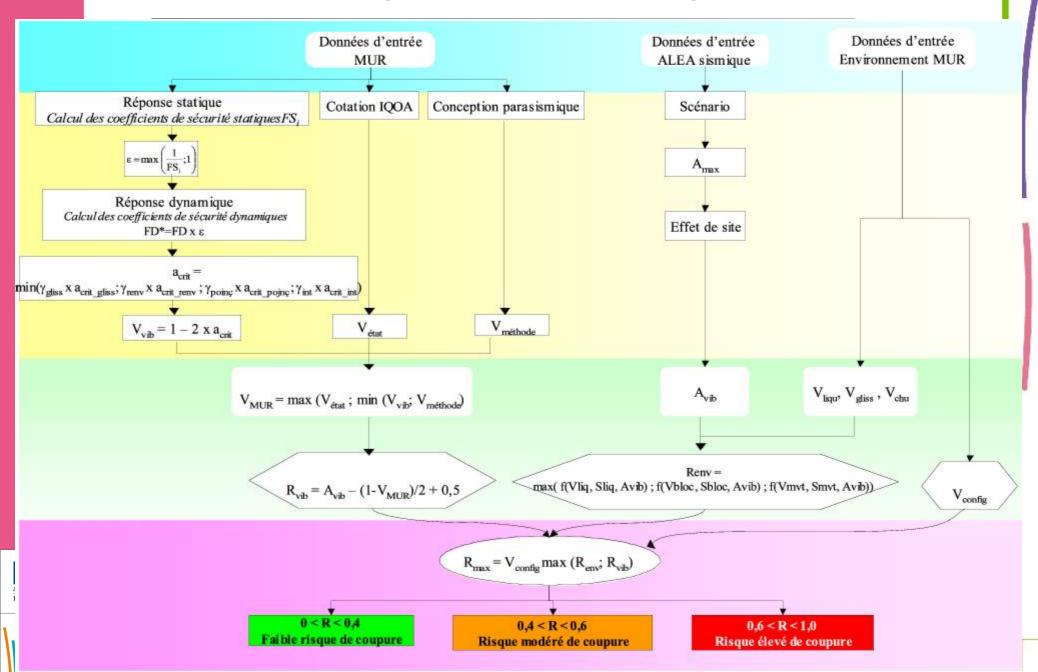
 R_{env} : Risques induits sur les ouvrages par l'environnement

GLISSEMENT DE TERRAIN



CHUTES DE BLOCS

LIQUEFACTION **DES SOLS**



SISMUR -Principes méthodologiques

Une procédure de calcul simplifiée

SISMUR - Feuille de calcul

Méthode simplifiée pour évaluer la vulnérabilité d'un mur de soutènement

SISMUR - RESULTATS

		TESCETTIES
FICHE DE RESU	JLTATS	
IDENTITE DE L'OUVRAG	GE	
ITINERAIRE	R.N.202	
NOM DE L'OUVRAGE	24	
POINT ROUTIER DEBUT (P.R.1)	12,425	And the second second
POINT ROUTIER FIN (P.R.2)	12,437	Mark Takes
CLASSE IQOA	2	
REGLEMENT DE CALCUL	PS69	
ACCELERATIONS CRITIQUES	S (ms-2)	
GLISSEMENT	3,74	
RENVERSEMENT	2,54	
POINCONNEMENT	1,98	
RUPTURE INTERNE	1,24	5 - 12 h 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RESULTATS SISMUR	l .	
V_{VIB}	0,47	
V _{ETAT}	0,6	
$V_{METHODE}$	0,8	
$V_{ m MUR}$	0,57	
FICHIER DE RESULTAT	rs	
FICHIER DE SAISIE DU MUR Val	lée Tinée/mur24	

SISMUR

Ministère de l'Écologie, du Développem durable, des Transports et du Logement

Journées CoTITA 2012